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Abstract

In this paper, we derive the equations characterizing the boundary layer which
describes the transition of the distribution function of a gas of weakly interacting
bosons to the distribution function of the gas in the presence of a Bose–Einstein
condensate. To this end, we first rederive the classical Uehling–Uhlenbeck
equation very briefly, taking as a starting point the dynamics of a system of
many weakly interacting quantum particles. The solutions of the Uehling–
Uhlenbeck equation yield blow up in finite time. Near the blow-up time, the
approximations used to derive the Uehling–Uhlenbeck equation break down.
We derive the set of equations that describe the building of correlations and
the onset of quantum interference effects for the many-particle Hamiltonian
system under the assumption that the blow-up for the Uehling–Uhlenbeck
equation takes place in a self-similar form.

PACS numbers: 02.30.Rz, 02.30.MV, 05.30.Jp

1. Introduction

The kinetic equation that describes the evolution of a rarefied system of bosons was obtained
by Nordheim [27] and by Uehling and Uhlenbeck [34]. In the limit of Born’s approximation,
the resulting equation, also known as the quantum Boltzmann equation, is the following:

∂f

∂t
+

p1

m
∇xf (p1, x, t) = C(f, f ) (1)
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C(f, f ) = 4πg2

h̄

∫
dp2

(2πh̄)3

∫
dp3

(2πh̄)3

∫
dp4

(2πh̄)3
(2πh̄)3δ(ε(p1) + ε(p2) − ε(p3) − ε(p4))

× q[f ](p1, p2;p3, p4, t) (2)

q[f ](p1, p2;p3, p4, t) = [f (p3)f (p4)(1 + f (p1))(1 + f (p2))

− f (p1)f (p2)(1 + (p3))(1 + f (p4))] (3)

with g = 4πah̄2/m where m is the mass of the particles, ε(p) = |p|2/2m is the energy of the
particles and a is the s-wave scattering length (cf [40] for example).

The starting point for the derivation of a kinetic system of equations is a set of equations
describing the dynamics of a system of N particles. In the case of weakly interacting bosons
such dynamics is described by the Schrödinger equation for a system of N interacting particles.
Assuming that the interaction between different particles is weak enough it is possible to obtain
suitable evolution equations for the one-particle distribution function using a perturbative
method. For classical particles, this has been mathematically proved for short times (cf [25])
or globally in time for special situations (cf [20]). This is the standard method used to derive
the Uehling–Uhlenbeck equation (see for example the classical monographies [1, 3] as well
as the more mathematically oriented approaches in [5, 7, 8, 31]). Similar arguments for the
Fermionic case may be found in [19, 18].

It turns out that the solutions of (1)–(3) can develop singularities in finite time, as it
has been obtained in the numerical simulations for spatially homogeneous distributions of
particles in [29, 30] as well as in [24]. The interpretation of this blow-up phenomenon, given
by the authors of these papers, is that such an event corresponds to the formation of the B–E
condensate. As we will see in this paper, the derivation of the U–U equation, taking a quantum
of many-particle systems as a starting point, is not valid near the time of the formation of the
singularity.

On the other hand, the quantum dynamics of the particles in the condensate is described
by the Gross–Pitaevskii equation (cf [2, 15, 16, 28, 40]). A rigorous mathematical proof of
the precise formulation of this fact has been obtained in [26] for the stationary case and in [9]
for the non-equilibrium case with short-range interactions in suitable scaling limits.

We are interested in the process formation of the condensate, a question which has already
been considered by several authors, see for example [6, 12, 13, 22, 33]. In particular, in [6, 22]
the dynamics of the particles of the system is approximated by means of a Gross–Pitaievskii
equation with stochastic initial data. A similar problem is also studied in [12, 13]. Our main
goal is to describe the transition between the kinetic regime described by the U–U equation
and the quantum regime described by means of a nonlinear Schrödinger equation in a detailed
manner. The relevant non-dimensional parameter is the quotient �E�t/h̄, where �E is a
characteristic value of the energy and �t is a characteristic time scale for the variation of the
density distributions. Interference effects cannot be ignored if this non-dimensional number
is of order 1. We then derive the equation of the boundary layer which should describe in
detail the transition from the distribution function at the critical time to the density function in
which the condensate is present.

Some of the arguments presented in this paper are standard in statistical physics. For
example, we make extensive use of the second quantification formalism in section 2. We also
use the classical BBGKY hierarchy for quantum particles in section 3. The arguments used
in these two sections are also used in the theory of weak turbulence and in general in the
derivation of kinetic equations for weakly interacting waves (cf [4, 39]). Part of the arguments
of section 4 are reminiscent of similar ones in [8, 40]. The main result of this paper is contained
in sections 5 and 6. We have however included the results in the previous sections in order to
fix the notation and explain as clearly as possible the limit under consideration.
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2. The N-particles system and the second quantification formalism

We start recalling the classical derivation of the U–U equation that takes as a starting point the
study of the dynamics of a quantum N− particle system by means of the second quantification
formalism. This will allow us to precise the assumptions in which such a derivation is based.

Let us assume that we have N quantum particles contained in a box � ≡ [0, L]3. We will
denote the density of particles as n = N

L3 . We will also suppose that the particles interact by
means of pair potentials. The Hamiltonian of the system is then given by

HN = H0,N + H1,N , (4)

where

H0,N = − h̄2

2m

N∑
j=1

�xj
, H1,N = 1

2

N∑
k=1

N∑
j=1,k �=j

V (xk − xj ). (5)

The evolution of the system is given by means of Heisenberg’s equation for the density matrix:

ih̄∂tρ = [HN, ρ] (6)

ρ(0) = ρ0. (7)

The precise form of the initial density matrix that characterizes the initial state of the system
will be given later. Let us precise the order of magnitude of the several parameters arising
in the system. There are two main characteristic length scales in the problem, namely the
average distance between particles d = L

N1/3 and the de Broglie length that is given by
λ = h̄

p0
≡ h̄√

2mkBT
. By assumption p0 ≡ √

2mkBT is just an estimate of a typical particle
momentum. The temperature T is not a true thermodynamic temperature, because the system
is not in equilibrium, but it is just a measure of the characteristic energy for the gas particles.

On the other hand, Born’s approximation in mathematical terms means that we may
assume that the interaction potential between particles V is smooth, but after deriving a set of
kinetic equations we will take the limit V → gδ(x), where g is defined just after formula (3).

The main assumptions on the physical parameters that we use in this paper are the
following:

N � 1, L � 1, n = N

L3
= constant (8)

λ ∼ d (9)

mλ2g

d3
∼ λ2a

d3
	 1. (10)

Assumption (8) is the usual thermodynamic limit assumption that ensures that there are
no boundary effects on the resulting equations. Assumption (10) means that the particle
interactions are weak and allows us to derive a kinetic equation for the evolution of
the distribution of particles. Finally, assumption (9) means that the particle densities are
large enough to allow for the formation of the B–E condensate. This is related to the fact that
the kinetic equation obtained under assumption (9) can yield blow-up in finite time.

We will first obtain a set of kinetic equations describing the evolution of the solutions of
(6), (7) in the limit defined by (8)–(10). This problem was solved by Nordheim and Uehling
and Uhlenbeck under the implicit additional hypothesis of the boundedness for the solution
of the resulting kinetic equation. However, such assumption fails, because the solution of

3
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the limit equation blows up in finite time as it has been seen in the numerical simulations
of [24, 29, 30]. Therefore the Uehling–Uhlenbeck equation is not the correct limit for the
system of particles under consideration in the limit (8)–(10), if the time t is close to the time
of formation of a singularity. The main goal of this paper is to obtain a new kinetic equation
describing the distribution of particles during the formation of the condensate.

2.1. Second quantification formalism

In order to study the N-particle system in the limit (8)–(10) we will use the formalism of the
second quantification. Most of the computations in this subsection are standard, but we will
reproduce them for the reader’s convenience. We will assume that the Hamiltonian HN in (4),
(5) acts in the Hilbert space:

HN ≡
N⊗

n=0

(L2(�))n. (11)

By definiteness we will assume that the wavefunctions satisfy periodic boundary
conditions in �. Homogeneous Dirichlet boundary conditions would work similarly. For
periodic boundary conditions, the eigenvalues of the momentum operator for a single particle
pk ≡ −ih̄∂xk

are given by

p = 2πh̄

L

, 
 ∈ Z

3.

We will denote the normalized eigenfunctions associated with the operator H0,N as

| . . . , n
, . . .〉, 
 ∈ Z
3,

where n
 is the number of particles in the state 
.

For notational convenience we will also use the following alternative way of writing these
eigenfunctions:

| . . . , n
, . . .〉 = |n(
)〉, where n : Z
3 → N = {0, 1, 2, . . .}

This notation will be convenient to write all the possible choices of occupation numbers in a
short manner.

We introduce the well-known annihilation and creation operators a
, a
+

 , N
 whose action

on these eigenfunctions is given by

a
| . . . , n
, . . .〉 = √
n
| . . . , n
 − 1, . . .〉, 
 ∈ Z

3 (12)

a+

 | . . . , n
, . . .〉 =

√
n
 + 1| . . . , n
 + 1, . . .〉, 
 ∈ Z

3 (13)

N
| . . . , n
, . . .〉 ≡ a+

 a
| . . . , n
, . . .〉 = n
| . . . , n
, . . .〉 (14)

and satisfy the commutation relations
[
ak, a

+



] = δk,
, [ak, a
] = [a+
k , a+




] = 0.

We now define the annihilation and creation operators of a particle at the point x of � by
means of

ψ(x) = 1

L
3
2

∑

∈Z

3

a
 e
2π i
x

L , ψ+(x) = 1

L
3
2

∑

∈Z

3

a+

 e− 2π i
x

L . (15)

Note that using the commutation relations

[ψ(x), ψ+(y)] = 1

L3

∑

∈Z

3

e
2π i
(x−y)

L = δ(x − y)

[ψ(x), ψ(y)] = [ψ+(x), ψ+(y)] = 0.

4



J. Phys. A: Math. Theor. 41 (2008) 395208 M Escobedo and J J L Velázquez

Using all these operators we can rewrite the operator H0,N as

H0,N =
N∑

j=1

p2
j

2m
=
∑

∈Z

3

ε
a
+

 a
,

where

ε
 ≡ 4π2h̄2
2

2mL2
, 
 ∈ Z

3.

Taking the gradient of (15) we obtain

H0,N = h̄2

2m

∫
�

∇ψ+(x)∇ψ(x) dx. (16)

On the other hand,

H1,N = 1

2

∫
�

dx1

∫
�

dx2 V (x1 − x2)ψ
+(x1)ψ

+(x2)ψ(x1)ψ(x2). (17)

We define the distribution functions

fj,m(x1, . . . , xj ; y1, . . . , ym) ≡ Tr(ρψ+(y1)ψ
+(y2) . . . ψ+(ym)ψ(x1)ψ(x2) . . . ψ(xj )) (18)

The computation of the evolution equations for the functions fj,m from (6) is standard (see for
example [1]) and gives

ih̄∂tfj,m = Tr(ρ[ψ+(y1)ψ
+(y2) . . . ψ+(ym)ψ(x1)ψ(x2) . . . ψ(xj ),HN ]). (19)

On the other hand, we can compute the commutator in (19) to obtain the following
evolution equation for the distribution functions fj,m

ih̄∂tfj,m(x1, . . . , xj ; y1, . . . , ym) = − h̄2

2m

(
j∑

s=1

�xs
−

m∑
s=1

�ys

)
fj,m(x1, . . . , xj ; y1, . . . , ym)

+
∫

�

dξ

[
j∑

k=1

V (ξ − xk) −
m∑

k=1

V (ξ − yk)

]
fj+1,m+1(x1, . . . , xj , ξ ; y1, . . . , ym, ξ)

+
1

2

⎡⎣ j∑
k=1

j∑
s=1,k �=s

V (xk − xs)−
m∑

k=1

m∑
s=1

V (yk − ys)

⎤⎦fj,m(x1, . . . , xj ; y1, . . . , ym).

(20)

2.2. On the choice of the initial data

In order to solve the system of equations (20) we must prescribe suitable initial data. We will
assume that the initial matrix density ρ(0) satisfies

ρ(0) = ρ0 = 1

Q

∑
n:Z3→N

P0(z,�; n)|n〉〈n| (21)

P0(z,�; n) ≡ z[
∑


∈Z3 n(
)]

⎛⎝∏

∈Z

3

(θ
)
n(
)

⎞⎠ (22)

n : Z
3 → N,

∑

∈Z

3

n(
) < ∞, (23)

5
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where

Q =
∑

n:Z3→N

P0(z,�; n)

has been chosen in order to have Tr(ρ0) = 1 and where

θ
 ≡ �

(
2π2h̄2

mkBT


2

L2

)
. (24)

Choosing the initial data as in (21), (22) we assume that the particles are independently and
homogeneously distributed in space according to the distribution �(·) in the space of energy.
Since we use a macrocanonical distribution the number of variables is a stochastic variable.
In the thermodynamic limit, the fluctuations in the number of particles can be expected to
disappear as it is usual in statistical physics. The value of z is chosen to obtain a given average
number of particles N for the distribution. Therefore,

〈N〉 = Tr(ρ0N) = 1

Q

∑
n:Z3→N

P0(z,�; n)N(n) = z
∂(log(Q))

∂z
,

where N(n) =∑
∈Z
3 n(
).

Instead of analyzing the original system (6), (7), we will study the equivalent system of
equations (20) that is more convenient to use perturbative arguments. Due to (18) we must
solve these equations with initial data:

fj,m;0(x1, . . . , xj ; y1, . . . , ym) ≡ Tr(ρ0ψ
+(x1)ψ

+(x2) . . . ψ+(xj )ψ(y1)ψ(y2) . . . ψ(ym)).

(25)

Using (21), (22) we obtain

fj,m;0(x1, . . . , xj ; y1, . . . , ym) = 0 if j �= m. (26)

The evolution equations (20), with initial data (26), admit a solution satisfying

fj,m(x1, . . . , xj ; y1, . . . , ym; t) = 0 if j �= m.

Therefore, we can restrict our study to the functions

Fk(x1, . . . , xk; y1, . . . , yk; t) ≡ fk,k(x1, . . . , xk; y1, . . . , yk; t).

On the other hand, we can compute the initial distribution Fk,0(x1, . . . , xk; y1, . . . , yk) ≡
Fk(x1, . . . , xk; y1, . . . , yk; 0) that due to (15) and (25) is given by

Fk,0(x1, . . . , xk; y1, . . . , yk) = 1

L3k

∑

1∈Z

3

. . .
∑

k∈Z

3

∑
j1∈Z

3

. . .
∑
jk∈Z

3

e− 2π i(
1x1+···+
kxk )

L
+ 2π i(j1y1+···+jkyk )

L

× Tr
(
ρ0a

+

1

a+

2

. . . a+

k

aj1 . . . ajk

)
. (27)

By (21) we then have

Tr
(
ρ0a

+

1

a+

2

. . . a+

k

aj1 . . . ajk

) = 1

Q

∑
n:Z3→N

∏

∈Z

3

(zθ
)
n(
)〈n|a+


1
a+


2
. . . a+


k
aj1 . . . ajk

|n〉.

Using standard statistical physics computations (cf [3]) we can approximate (27) in the limit
L → ∞ as

Fk,0(x1, . . . , xk; y1, . . . , yk) =
∑
σ∈Sk

k∏
m=1

F0(ym − xσ(m); z), (28)

where

F0(y; z) ≡
∫

R
3

[
z�(ε(ξ)) e2π iyξ

1 − z�(ε(ξ))

]
dξ, ε(ξ) ≡ 2π2h̄2

mkBT
ξ 2. (29)

6



J. Phys. A: Math. Theor. 41 (2008) 395208 M Escobedo and J J L Velázquez

3. The small correlations approximation

3.1. Non-dimensional equations

Summarizing, we have reduced the problem to the following system of equations (cf (20),
(28)):

ih̄∂tFk(x1, . . . , xk; y1, . . . , yk, t) = A1 + A2 + A3; k = 1, 2, . . . (30)

A1 = − h̄2

2m

(
k∑

s=1

[
�xs

− �ys

])
Fk(x1, . . . , xk; y1, . . . , yk; t) (31)

A2 =
∫

�

dξ

⎡⎣ k∑
j=1

[V (ξ − xj ) − V (ξ − yj )]

⎤⎦Fk+1(x1, . . . , xk, ξ ; y1, . . . , yk, ξ ; t) (32)

A3 = 1

2

⎡⎣ k∑
j=1

k∑
s=1,j �=s

[V (xj − xs) − V (yj − ys)]

⎤⎦Fk(x1, . . . , xk; y1, . . . , yk; t) (33)

with initial data:

Fk,0(x1, . . . , xk; y1, . . . , yk) =
∑
σ∈Sk

k∏
m=1

F0(ym − xσ(m); z). (34)

The first two equations of this hierarchy are

ih̄∂tF1(x1; y1; t) = − h̄2

2m

(
�x1 − �y1

)
F1(x1; y1; t) +

∫
�

dξ [V (ξ − x1) − V (ξ − y1)]

× [F1(x1; y1; t)F1(ξ ; ξ ; t) + F1(x1; ξ ; t)F1(ξ ; y1; t)]

+
∫

�

dξ [V (ξ − x1) − V (ξ − y1)]F2(x1, ξ ; y1, ξ ; t) (35)

ih̄∂tF2(x1, x2; y1, y2; t) = − h̄2

2m

(
�x1 + �x2 − �y1 − �y2

)
F2(x1, x2; y1, y2; t)

+
2∑

j=1

∫
�

dξ [V (ξ − xj ) − V (ξ − yj )]F3(x1, x2, ξ ; y1, y2, ξ ; t)

+ [V (x1 − x2) − V (y1 − y2)]F2(x1, x2; y1, y2; t). (36)

In order to more clearly understand the limit that we are considering, we introduce the
non-dimensional variables

x = λx̂, V (x) = g

λ3
V̂ (x̂), Fk(x) =

(
1

d3

)k

F̂k(x̂), t = 2mλ2

h̄ε2
t̂ , p = h̄

λ
p̂ (37)

g = ε
h̄2

2mλ2
d3, (38)

where, due to (10), ε is a small parameter and by assumption the potential V̂ (x̂) is now of
order 1. Our choice of time scale is due to the fact that we want to obtain, in the limit ε → 0, an
equation in which the particle density varies in times t̂ of order 1. Note that (x, p) → (x̂, p̂)

7
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is not a canonical transformation but transforms a ‘quantum cell’ in the phase space of volume
h̄ into another cell of volume one.

For the sake of simplicity, we drop the hats in all the variables x̂, p̂, t̂ , F̂k and V̂ as it is
customary in the computations of asymptotic expansions. The system (35)–(36) then becomes

i∂tF1(x1; y1; t) = − 1

ε2

(
�x1 − �y1

)
F1(x1; y1; t) +

1

ε

∫
�

dξ [V (ξ − x1) − V (ξ − y1)]

× [F1(x1; y1; t)F1(ξ ; ξ ; t) + F1(x1; ξ ; t)F1(ξ ; y1; t)]

+
1

ε

∫
�

dξ [V (ξ − x1) − V (ξ − y1)]F2(x1, ξ ; y1, ξ ; t) (39)

i∂tF2(x1, x2; y1, y2; t) = − 1

ε2

(
�x1 + �x2 − �y1 − �y2

)
F2(x1, x2; y1, y2; t)

+
1

ε

2∑
j=1

∫
�

dξ [V (ξ − xj ) − V (ξ − yj )]F3(x1, x2, ξ ; y1, y2, ξ ; t)

+
1

ε

(
d

λ

)3

[V (x1 − x2) − V (y1 − y2)]F2(x1, x2; y1, y2; t). (40)

3.2. Small correlations limit

Our aim is to obtain closure relations for the functions Fk by means of a perturbative argument.
Note that in the absence of potential the system of equations (39), (40) might be explicitly

solved and the resulting solutions have the form:

Fk(x1, . . . , xk; y1, . . . , yk; t) =
∑
σ∈Sk

k∏
m=1

F1(xσ(m), ym; t). (41)

Moreover, the function F0 in (29) is invariant under spatial translations whence
F0(x1; y1) = F0(x1 − y1). Since the system of equations (30)–(33) are also invariant under
spatial translations it follows that F1(x1; y1; t) = F1(x1 − y1; t) for any t > 0.

Note that in this case we can consider the solutions of this form as ‘uncorrelated’ solutions,
although in a strict mathematical sense the corresponding probability distributions are not
uncorrelated. But the only correlations between particles whose distribution is given by (41)
would be those due to the symmetry of the wavefunctions due to the bosonic character of the
particles (cf the discussion in [3]). In any case the approximation (41) is a convenient starting
point for the computation of the solutions of (30)–(34) in a perturbative manner. We define
the correlation functions Gk by means of the identity

Fk(x1, . . . , xk; y1, . . . , yk; t) = Gk(x1, . . . , xk; y1, . . . , yk; t)

+ F̃ k(x1, . . . , xk; y1, . . . , yk; t), (42)

where we have defined

F̃ k(x1, . . . , xk; y1, . . . , yk; t) =
∑
σ∈Sk

k∏
m=1

F1(xσ(m), ym; t). (43)

It is possible to derive a kinetic approximation for (35), (36) under the following small
correlation assumptions:

|Gk| 	
k∏

m=1

|F1|. (44)

8
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Indeed, under this assumption we obtain, plugging (42) into (35)–(36),

i∂tF1(x1; y1; t) = − 1

ε2

(
�x1 − �y1

)
F1(x1; y1; t) +

1

ε

∫
�

dξ [V (ξ − x1) − V (ξ − y1)]

× [F1(x1; y1; t)F1(ξ ; ξ ; t) + F1(x1; ξ ; t)F1(ξ ; y1; t)]

+
1

ε

∫
�

dξ [V (ξ − x1) − V (ξ − y1)]F2(x1, ξ ; y1, ξ ; t). (45)

i∂tF2(x1, x2; y1, y2; t) = − 1

ε2

(
�x1 + �x2 − �y1 − �y2

)
F2(x1, x2; y1, y2; t)

+
1

ε

2∑
j=1

∫
�

dξ [V (ξ − xj ) − V (ξ − yj )]F̃ 3(x1, x2, ξ ; y1, y2, ξ ; t)

+
1

ε

(
d

λ

)3

[V (x1 − x2) − V (y1 − y2)]F̃ 2(x1, x2; y1, y2; t). (46)

The relative strength of the terms yielding correlations is of order ε. This explains why in
equation (46) we have approximated F2 and F3 by F̃ 2 and F̃ 3, respectively. Note that we have
kept all the terms in equation (45) and only terms of order 1/ε or larger in (46).

We then compute the evolution equations for F1(x1; y1; t) and G2(x1, x2; y1, y2; t)

using (42), the approximation (45)–(46), neglecting terms of order O(ε2) and using Born’s
approximation which in the variables that we are using reduces to

V (x) = δ(x). (47)

We finally obtain

i∂tF1(x1; y1; t) = − 1

ε2

(
�x1 − �y1

)
F1(x1; y1; t)

+
1

ε
g[G2(x1, x1; y1, x1; t) − G2(x1, y1; y1, y1; t)] (48)

i∂tG2(x1, x2; y1, y2; t) = − 1

ε2

(
�x1 + �x2 − �y1 − �y2

)
G2(x1, x2; y1, y2; t)

+
1

ε
g[F1(x2; x1; t)F̃ 2(x1, x1; y1, y2; t) − F1(y1; y2; t)F̃ 2(x1, x2; y1, y1; t)]

+
1

ε
g[F1(x1; x2; t)F̃ 2(x2, x2; y1, y2; t) − F1(y2; y1; t)F̃ 2(x1, x2; y2, y2; t)]

+
1

ε

(
d

λ

)3

g[δ(x1 − x2) − δ(y1 − y2)]F̃ 2(x1, x2; y2, y2; t). (49)

The invariance of the initial distribution F0(x1; y1) under spatial translations implies that,
with a slight abuse of language, the solutions of (48), (49) have the form:

F1(x1; y1; t) = F1(x1 − y1; t) (50)

G2(x1, x2; y1, y2; t) = G2(x1 − y1, x2 − y1; 0, y2 − y1; t). (51)

Under these assumptions equations (48), (49) reduce to

i∂tF1(x1 − y1; t) = 1

ε
g[G2(x1, x1; y1, x1; t) − G2(x1, y1; y1, y1; t)] (52)

9
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i∂tG2(x1, x2; y1, y2; t) = − 1

ε2

(
�x1 + �x2 − �y1 − �y2

)
G2(x1, x2; y1, y2; t) +

1

ε
Q[F1],

(53)

where

Q[F1](x1, x2; y1, y2; t)

= [F1(x2; x1; t)F̃ 2(x1, x1; y1, y2; t) − F1(y1; y2; t)F̃ 2(x1, x2; y1, y1; t)]

+ [F1(x1; x2; t)F̃ 2(x2, x2; y1, y2; t) − F1(y2; y1; t)F̃ 2(x1, x2; y2, y2; t)]

+

(
d

λ

)3

[δ(x1 − x2) − δ(y1 − y2)]F̃ 2(x1, x2; y2, y2; t) (54)

Due to (34) we have

G2(x1, x2; y1, y2; 0) ≡ 0. (55)

The system of equations (52)–(55) will be our starting point for the description of the
Bose gas in which we are interested. Note that it is a closed system of partial differential
equations.

4. The problem in the phase space

The function that describes the one-particle density in the phase space in quantum problems
is the Wigner transform of F1(x1; y1; t). Such a function is defined as

f1(x, p; t) = 1

(2π)3

∫
R

3
F1(x + ζ ; x − ζ ; t) eiζp dζ, (56)

where the normalization constant in (56) has been chosen in order to have∫
f1(x, p) dx dp = N.

In the spatially homogeneous case we have F1(x + ζ ; x − ζ ; t) = F1(ζ ; t) due to (51).
Therefore, (56) reduces to the Fourier transform

f1(x, p; t) = f1(p, t) = 1

(2π)3

∫
R

3
F1(ζ ; t) eiζp dζ. (57)

In order to obtain the evolution equation for f1(p, t) we then take the Fourier transform
of (53), (54):

i∂tf1(p, t) = 1

(2π)3ε

∫
R

3
[G2(ζ, ζ ; 0, ζ ; t) − G2(ζ, 0; 0, 0; t)] eiζp dζ. (58)

On the other hand, we have the following Fourier representation for the function
G2(x1, x2; y1, y2; t):

g2(ξ1, ξ2; η1, η2; t) = 1

(2π)12

∫
(R3)4

dx1 dx2 dy1 dy2 ei(ξ1x1+ξ2x2−η1y1−η2y2)G2(x1, x2; y1, y2; t),

(59)

G2(x1, x2; y1, y2; t) =
∫

(R3)4
dξ1 dξ2 dη1 dη2 e−i(ξ1x1+ξ2x2−η1y1−η2y2)g2(ξ1, ξ2; η1, η2; t). (60)

Let us write

w(ξ1, ξ2; η1, η2; t) = 1

(2π)12

∫
(R3)4

dx1 dx2 dy1 dy2 ei(ξ1x1+ξ2x2−η1y1−η2y2)

×Q[F1](x1, x2; y1, y2; t) (61)

10
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Taking the Fourier transform of (53) and using (60) in (58) we obtain the following system
of equations for f1 and g2 :

i∂tf1(p, t) = 1

ε

∫
(R3)4

dξ1 dξ2 dη1 dη2[δ(p − η1) − δ(p − ξ1)]g2(ξ1, ξ2; η1, η2; t) (62)

i∂tg2(ξ1, ξ2; η1, η2; t) = 1

ε2
[ε(ξ1) + ε(ξ2) − ε(η1) − ε(η2)]g2(ξ1, ξ2; η1, η2; t)

+
1

ε
w(ξ1, ξ2; η1, η2; t), (63)

where w(ξ1, ξ2; η1, η2; t) is as in (54), (61) and the energy ε(p) in the non-dimensional
variables is ε(p) = p2. To obtain a closed system for f1, g2 it only remains to compute
w(ξ1, ξ2; η1, η2; t) in terms of f1. To this end note that (57) yields

F1(ζ ; t) =
∫

f1(p, t) e−ipζ dp. (64)

Using (50) in the formula of Q[F1] and plugging the final expression into (61) we obtain, after
some computations,

w(ξ1, ξ2; η1, η2; t) = 2δ(ξ1 + ξ2 − η1 − η2)q[f ](ξ1, ξ2; η1, η2, t)

q[f1](ξ1, ξ2; η1, η2, t) =
[
f1(η1)f1(η2)

((
d

2πλ

)3

+ f1(ξ1)

)((
d

2πλ

)3

+ f1(ξ2)

)

− f1(ξ1)f (ξ2)

((
d

2πλ

)3

+ f1(η1)

)((
d

2πλ

)3

+ f1(η2)

)]
, (65)

where we have dropped the time dependence of the function f1 on the right-hand side of (65).
The solution g2 to (63) is then

g2(ξ1, ξ2; η1, η2; t) = −2i

ε
δ(ξ1 + ξ2 − η1 − η2)

∫ t

0
e− i

ε2 [ε(ξ1)+ε(ξ2)−ε(η1)−ε(η2)](t−s)

× q[f1](ξ1, ξ2; η1, η2; s) ds, (66)

where we have used that g2(·, ·; ·, ·; 0) ≡ 0 due to (55) and (59). The Dirac measure in (66)
may be simplified if we define

g2(ξ1, ξ2; η1, η2; t) = δ(ξ1 + ξ2 − η1 − η2)ϕ(ξ1, ξ2; η1, η2; t),

from where (66) gives

ϕ(ξ1, ξ2; η1, η2; t) = −2i

ε

∫ t

0
e− i

ε2 [ε(ξ1)+ε(ξ2)−ε(η1)−ε(η2)](t−s)
q[f1](ξ1, ξ2; η1, η2; s) ds (67)

Plugging (67) into (62) and using the symmetry of q[f1] with respect to its arguments ξ1, ξ2, η1

and η2 we finally obtain the following equation for f1:

∂tf1(p1, t) = 4

ε2

∫ t

0
ds

∫
(R3)3

dp2 dp3 dp4

{
cos

[
1

ε2
(ε(p1) + ε(p2) − ε(p3) − ε(p4))(t − s)

]}
× δ(p1 + p2 − p3 − p4)q[f1](p1, p2;p3, p4; s). (68)

Non-Markovian Boltzmann equations have been found in several physical situations (cf,
for example, [2, 8, 14, 23, 40] and references therein).

11
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5. The kinetic limit: the Uehling–Uhlenbeck equation

5.1. Derivation of the Uehling–Uhlenbeck equation

The formal derivation of the U–U equation would then proceed as follows. If we suppose that

1

ε2
(ε(p) + ε(p2) − ε(p3) − ε(p4))(τ − σ) � 1 (69)

a simple formal argument gives

1

ε2
cos

[
1

ε2
(ε(p) + ε(p2) − ε(p3) − ε(p4))(τ − σ)

]
⇀ πδ(τ − σ)δ(ε(p) + ε(p2) − ε(p3) − ε(p4)) (70)

in the sense of measures, where in that formula p2 ≡ p3 + p4 − p1. We finally end up with
the U–U equation,

∂tf1(p1, t) = 4π

∫
(R3)3

dp2 dp3 dp4 δ(ε(p1) + ε(p2) − ε(p3) − ε(p4))

× δ(p1 + p2 − p3 − p4)q[f1](p1, p2;p3, p4; t). (71)

Note however that this approximation requires condition (69), which, using the
original physical variables, can be formulated as the quasiclassical condition �E�t � h̄.
Equation (71) is just equations (1)–(3) written in a different system of units.

5.2. The loss of validity of the kinetic approximation

According to the blow-up scenario of Semikoz & Tkachev (cf [29, 30]) and Pomeau et al
(cf [21, 24]) the blow-up for equation (71) takes place in a self-similar manner and the
distribution of particles has relevant variations in the regions of the space of momentum p
whose size rescales like the power (T − t)β for some positive β. In order to describe this
region by means of an equation free of parameters we look for self-similar solutions of (71).
Such solutions have the form

f (t, p) = (T − t)−2β−1/2�(ξ), ξ = p

(T − t)β
, (72)

where the numerically computed value of β is such that β = 1.069 (see [24]). The function
�, that is of order 1, solves then an integro differential equation free of parameters. Note also
that the functional form (72) immediately tells us the time scales for which the interference
effects in (68) cannot be ignored or, more precisely, in dimensional variables, the time scale
where �E�t ∼ h̄. This happens if p2(T − t) ∼ ε2 or equivalently if

(T − t) ∼ ε2

p2
. (73)

Since p ∼ (T − t)β in the self-similar region, we obtain that the interference effects appear at
times

(T − t) ∼ ε
2

2β+1 . (74)

For this time scale we have to introduce a boundary layer in order to take into account the
interference effects in (68) that have been neglected in (71).

12
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5.3. The correlations of order 1 in the boundary layer

It turns out that in the same time scale where (70) starts failing, the small correlation
approximation condition (44) ceases being valid. Indeed, assuming the self-similar behaviour
(72) we obtain

F1(ζ, t) = (2π)3
∫

R
3
f1(p, t) e−iζp dp, (75)

= (2π)3(T − t)β−1/2
∫

�(Z) e−iζ(T −t)βZ dZ, (76)

= (T − t)β−1/2�(Z(T − t)β). (77)

On the other hand, (53) and (54) yield that for the boundary layer time scale

G ∼ 1

ε
F 3

1 (T − t)

from where, we obtain, using (74),

G ∼ (T − t)2β−1 ∼ F 2
1 . (78)

A similar argument shows that |Gk| ∼ �k
m=1|F1| for k > 1. It then follows that the

approximation of the system (35), (36) by system (45), (46) breaks down at the time
scale (74).

6. The boundary layer: analytic description

In this section, we derive the set of equations describing the boundary layer where the kinetic
approximation is lost. Since, as we have seen, the correlations are of order 1 in that region,
we need to keep a major part of the equations in system (30). Using the non-dimensional
variables (37) that system becomes

i∂tFk(x1, . . . , xk; y1, . . . , yk, t) = A1 + A2 + A3; k = 1, 2, . . . , (79)

A1 = − 1

ε2

(
k∑

s=1

[
�xs

− �ys

])
Fk(x1, . . . , xk; y1, . . . , yk; t), (80)

A2 = 1

ε

∫
�

dξ

⎡⎣ k∑
j=1

[V (ξ − xj ) − V (ξ − yj )]

⎤⎦Fk+1(x1, . . . , xk, ξ ; y1, . . . , yk, ξ ; t) (81)

A3 = 1

2ε

(
d

λ

)3
⎡⎣ k∑

j=1

k∑
s=1,k �=s

[V (xj − xs) − V (yj − ys)]

⎤⎦
×Fk(x1, . . . , xk; y1, . . . , yk; t). (82)

The rescaling (74) suggests to define new variables as follows:

Fk(x1, . . . , xk; y1, . . . , yk; t) = ε
2β−1
2β+1 k

Hk(X1, . . . , Xk;Y1, . . . , Yk; τ) (83)

T − t = −ε
2

2β+1 τ, xi = ε
− 2β

2β+1 Xi, p = ε
2β

2β+1 P. (84)
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Neglecting lower order terms in ε and using that V (x) = δ(x) we obtain that the functions Hk

satisfy at leading order the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i∂τHk(X1, . . . , Xk;Y1, . . . , Yk, τ ) = A1 + A2; k = 1, 2, . . .

A1 = −
(

k∑
s=1

[
�Xs

− �Ys

])
Hk(X1, . . . , Xk;Y1, . . . , Yk; τ)

A2 =
k∑

j=1

[Hk+1(X1, . . . , Xk,Xj ;Y1, . . . , Yk,Xj ; τ)

−Hk+1(X1, . . . , Xk, Yj ;Y1, . . . , Yk, Yj ; τ)].

(85)

This system must be solved with the asymptotic condition

H1(X, Y, τ ) ∼ (−τ)β−1/2�((X − Y )(−τ)β) as τ → −∞ (86)

Hk(X1, . . . , Xk;Y1, . . . , Yk; τ) ∼
∑
σ∈Sk

k∏
m=1

H1(Xσ(m), Ym; τ) as τ → −∞. (87)

Note that formula (85) implies that all the correlation functions Gk defined in (42) were of the
order of �k

m=1|F1| in the time scale (74).
This problem may also be expressed in the phase space using Wigner transforms that are

defined as

ϕk(X1, . . . , Xk;P1, . . . , Pk; τ) = 1

(2π)3

∫
dζ1 . . . dζk ei

∑k
j=1ζj Pj

×Hk(X1 − ζ1, . . . , Xk − ζk;X1 + ζ1, . . . , Xk + ζk; τ).

Plugging this into the system (85) we obtain

∂ϕk

∂τ
+

k∑
j=1

Pj · ∇Xj
ϕk = (2π)3k

k∑
j=1

∫
dζj dP̃j dP̃k+1 eiζj (Pj −P̃j )

× [ϕk+1(X1, . . . , Xk,Xj − ζj ;P1, ṡ, P̃j , . . . , Pk, P̃k+1; τ)

−ϕk+1(X1, . . . , Xk,Xj + ζj ;P1, ṡ, P̃j , . . . , Pk, P̃k+1, τ )]; k = 1, 2, . . . .

(88)

The asymptotic data as τ → −∞ are now determined by

ϕ1(X;P ; τ) = ϕ1(P ; τ) ∼ (−τ)−β−1/2�

(
P

(−τ)β

)
(89)

ϕk(X1, . . . , Xk;P1, ṡ, Pk; τ) ∼ 1

(2π)3k

∑
σ∈Sk

∫
dζ1 · · · dζk ei

∑k
j=1 ζj Pj

×
k∏

m=1

H1(Xσ(m) − ζσ(m) − Xm − ζm; τ), k > 1. (90)

Both systems, (85)–(87) and (88)–(90), are rather complicated objects to study that we do
not consider in detail in this paper. However, the solution of this problem should provide a
clear description on how the transition from the kinetic regime to the quantum-dominated and
highly correlated regime takes place.
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It is interesting to compute the time for which the correlations appear in physical variables.
Using (74), we obtain that such a scale is given by

T ∗ − t = 2mλ2

h̄

(
aλ2

d3

)− 4β

2β+1

,

where T ∗ is the time at which the Uehling–Uhlenbeck equation blows up in the original
physical units. For the kind of initial data that we are considering, given by (28) and (29), this
time coincides with that obtained in [6]. This shows that we are actually looking at phenomena
which occur in the same time scale.

The range of physical moments that would be described by the above systems (‘in the
boundary layer’) is

p ∼ h̄

λ

(
aλ2

d3

) 2β

2β+1

.

Finally, the correlation lengths in this boundary layer are

x ∼ λ

(
d3

aλ2

) 2β

2β+1

.

7. Concluding remarks

In this paper, we have derived the set of equations describing the quantum distribution of
particles near the formation of the condensate. This has been achieved using the self-similar
behaviour of the solutions of the Uehling–Uhlenbeck equation which develop singularities
obtained in the numerical simulations of [21, 24, 29, 30]. In order to perform this derivation
as precisely, we have briefly reviewed the derivation of the Uehling–Uhlenbeck model taking
as a starting point a system of many quantum particles. This has also allowed us to obtain the
time scale where such a derivation breaks down.

The system of equations that we have derived in this paper captures the type of
mathematical object to be studied in order to describe the onset of interference effects near
Bose–Einstein condensation, the way in which non-Markovian effects arise and the specific
way in which correlations appear in the system. These questions have already been treated in
the literature by several authors [6, 12, 13, 22, 33] in different ways. We think that it would
be relevant to obtain a formalism describing Bose–Einstein condensation as mathematically
rigorous as possible.

Our contribution is to deduce the set of equations (85)–(87), which do not contain any
parameter, including the number of particles. A detailed knowledge of the properties of this
system could shed new light on this physical process. It could be useful in particular to test
some of the assumptions used in different approximations performed in the literature.

On the other hand, several problems where forming singularities, which would develop
in finite time, are stopped from forming if additional effects are introduced, have been studied
mathematically with great detail in recent years (cf [11, 37, 38]). Our purpose is to apply
similar ideas to the problem of the Bose–Einstein condensation.

The mathematical problem (85)–(87) is still a formidable, although linear system of
infinite equations. Analogous systems have been considered in cases where the distribution of
particles is uncorrelated, for instance in the case of the derivation of Boltzmann equations (cf
[31, 32]). The system that we have obtained in this paper is more complicated because it does
not have uncorrelated solutions that might be written as the product of infinitely many one-
particle distributions. Nevertheless, the study of systems with an infinite number of equations
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has greatly advanced in recent years, cf [10, 17, 35, 36] for example. It makes sense therefore
to state such a precise formulation of the mathematical problem to be considered in order to
improve the understanding of the onset of the Bose–Einstein condensation.
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